her

Wednesday, 24 December 2014

When we type some letters or words, the computer translates them in numbers as computers can understand only numbers. A computer can understand positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.
A value of each digit in a number can be determined using
  • The digit
  • The position of the digit in the number
  • The base of the number system (where base is defined as the total number of digits available in the number system).

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system. Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number system, the successive positions to the left of the decimal point represent units, tens, hundreds, thousands and so on.
Each position represents a specific power of the base (10). For example, the decimal number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the hundreds position, and 1 in the thousands position, and its value can be written as
(1x1000)+ (2x100)+ (3x10)+ (4xl)
(1x103)+ (2x102)+ (3x101)+ (4xl00)
1000 + 200 + 30 + 4
1234
As a computer programmer or an IT professional, you should understand the following number systems which are frequently used in computers.
S.N. Number System and Description
1 Binary Number System
Base 2. Digits used : 0, 1
2 Octal Number System
Base 8. Digits used : 0 to 7
3 Hexa Decimal Number System
Base 16. Digits used : 0 to 9, Letters used : A- F

Binary Number System

Characteristics of binary number system are as follows:

  • Uses two digits, 0 and 1.
  • Also called base 2 number system
  • Each position in a binary number represents a 0 power of the base (2). Example 20
  • Last position in a binary number represents a x power of the base (2). Example 2x where x represents the last position - 1.

Example

Binary Number : 101012
Calculating Decimal Equivalent:
Step Binary Number Decimal Number
Step 1 101012 ((1 x 24) + (0 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
Step 2 101012 (16 + 0 + 4 + 0 + 1)10
Step 3 101012 2110
Note : 101012 is normally written as 10101.

Octal Number System

Characteristics of octal number system are as follows:

  • Uses eight digits, 0,1,2,3,4,5,6,7.
  • Also called base 8 number system
  • Each position in an octal number represents a 0 power of the base (8). Example 80
  • Last position in an octal number represents a x power of the base (8). Example 8x where x represents the last position - 1.

Example

Octal Number : 125708
Calculating Decimal Equivalent:
Step Octal Number Decimal Number
Step 1 125708 ((1 x 84) + (2 x 83) + (5 x 82) + (7 x 81) + (0 x 80))10
Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10
Step 3 125708 549610
Note : 125708 is normally written as 12570.

Hexadecimal Number System

Characteristics of hexadecimal number system are as follows:

  • Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
  • Letters represents numbers starting from 10. A = 10. B = 11, C = 12, D = 13, E = 14, F = 15.
  • Also called base 16 number system
  • Each position in a hexadecimal number represents a 0 power of the base (16). Example 160
  • Last position in a hexadecimal number represents a x power of the base (16). Example 16x where x represents the last position - 1.

Example

Hexadecimal Number : 19FDE16
Calculating Decimal Equivalent:
Step Binary Number Decimal Number
Step 1 19FDE16 ((1 x 164) + (9 x 163) + (F x 162) + (D x 161) + (E x 160))10
Step 2 19FDE16 ((1 x 164) + (9 x 163) + (15 x 162) + (13 x 161) + (14 x 160))10
Step 3 19FDE16 (65536+ 36864 + 3840 + 208 + 14)10
Step 4 19FDE16 10646210
Software is a set of programs, which is designed to perform a well-defined function. A program is a sequence of instructions written to solve a particular problem.
There are two types of software
  • System Software
  • Application Software

System Software

The system software is collection of programs designed to operate, control, and extend the processing capabilities of the computer itself. System software are generally prepared by computer manufactures. These software products comprise of programs written in low-level languages which interact with the hardware at a very basic level. System software serves as the interface between hardware and the end users.
Some examples of system software are Operating System, Compilers, Interpreter, Assemblers etc.
Application Software Features of system software are as follows:
  • Close to system
  • Fast in speed
  • Difficult to design
  • Difficult to understand
  • Less interactive
  • Smaller in size
  • Difficult to manipulate
  • Generally written in low-level language

Application Software

Application software products are designed to satisfy a particular need of a particular environment. All software applications prepared in the computer lab can come under the category of Application software.
Application software may consist of a single program, such as a Microsoft's notepad for writing and editing simple text. It may also consist of a collection of programs, often called a software package, which work together to accomplish a task, such as a spreadsheet package.
Examples of Application software are following:
  • Payroll Software
  • Student Record Software
  • Inventory Management Software
  • Income Tax Software
  • Railways Reservation Software
  • Microsoft Office Suite Software
  • Microsoft Word
  • Microsoft Excel
  • Microsoft Powerpoint
Application Software Features of application software are as follows:
  • Close to user
  • Easy to design
  • More interactive
  • Slow in speed
  • Generally written in high-level language
  • Easy to understand
  • Easy to manipulate and use
  • Bigger in size and requires large storage space

Hardware represents the physical and tangible components of a computer i.e.

Hardware represents the physical and tangible components of a computer i.e. the components that can be seen and touched.
Examples of Hardware are following:
  • Input devices -- keyboard, mouse etc.
  • Output devices -- printer, monitor etc.
  • Secondary storage devices -- Hard disk, CD, DVD etc.
  • Internal components -- CPU, motherboard, RAM etc.
Computer Hardware

Relationship between Hardware and Software

  • Hardware and software are mutually dependent on each other. Both of them must work together to make a computer produce a useful output.
  • Software cannot be utilized without supporting hardware.
  • Hardware without set of programs to operate upon cannot be utilized and is useless.
  • To get a particular job done on the computer, relevant software should be loaded into the hardware
  • Hardware is a one-time expense.
  • Software development is very expensive and is a continuing expense.
  • Different software applications can be loaded on a hardware to run different jobs.
  • A software acts as an interface between the user and the hardware.
  • If hardware is the 'heart' of a computer system, then software is its 'soul'. Both are complimentary to each other.

Internal Computer Hardware

Introduction

Computer Hardware is the physical part of a computer, as distinguished from the computer software that executes or runs on the hardware. The hardware of a computer is infrequently changed, while software and data are modified frequently. The term soft refers to readily created, modified, or erased. These are unlike the physical components within the computer which are hard.
When you think of the term computer hardware you probably think of the guts inside your personal computer at home or the one in your classroom. However, computer hardware does not specifically refer to personal computers. Instead, it is all types of computer systems. Computer hardware is in embedded systems in automobiles, microwave ovens, CD players, DVD players, and many more devices. In 2003, only 0.2% of all microprocessors sold were for personal computers. How many other things in your house or your classroom use computer hardware?
Inside Computer
Inside Computer

Motherboard

The motherboard is the body or mainframe of the computer, through which all other components interface. It is the central circuit board making up a complex electronic system. A motherboard provides the electrical connections by which the other components of the system communicate. The mother board includes many components such as: central processing unit (CPU), random access memory (RAM), firmware, and internal and external buses.
Motherboard
Motherboard

Central Processing Unit

The Central Processing Unit (CPU; sometimes just called processor) is a machine that can execute computer programs. It is sometimes referred to as the brain of the computer.
CPU Diagram
CPU Diagram
There are four steps that nearly all CPUs use in their operation: fetch, decode, execute, and writeback. The first step, fetch, involves retrieving an instruction from program memory. In the decode step, the instruction is broken up into parts that have significance to other portions of the CPU. During the execute step various portions of the CPU, such as the arithmetic logic unit (ALU) and the floating point unit (FPU) are connected so they can perform the desired operation. The final step, writeback, simply writes back the results of the execute step to some form of memory.

Random Access Memory

Random access memory (RAM) is fast-access memory that is cleared when the computer is power-down. RAM attaches directly to the motherboard, and is used to store programs that are currently running. RAM is a set of integrated circuits that allow the stored data to be accessed in any order (why it is called random). There are many different types of RAM. Distinctions between these different types include: writable vs. read-only, static vs. dynamic, volatile vs. non-volatile, etc.
RAM
RAM

Firmware

Firmware is loaded from the Read only memory (ROM) run from the Basic Input-Output System (BIOS). It is a computer program that is embedded in a hardware device, for example a microcontroller. As it name suggests, firmware is somewhere between hardware and software. Like software, it is a computer program which is executed by a microprocessor or a microcontroller. But it is also tightly linked to a piece of hardware, and has little meaning outside of it. Most devices attached to modern systems are special-purpose computers in their own right, running their own software. Some of these devices store that software (“firmware”) in a ROM within the device itself

Power Supply

The power supply as its name might suggest is the device that supplies power to all the components in the computer. Its case holds a transformer, voltage control, and (usually) a cooling fan. The power supply converts about 100-120 volts of AC power to low-voltage DC power for the internal components to use. The most common computer power supplies are built to conform with the ATX form factor. This enables different power supplies to be interchangable with different components inside the computer. ATX power supplies also are designed to turn on and off using a signal from the motherboard, and provide support for modern functions such as standby mode.

Removable Media Devices

If your putting something in your computer and taking it out is most likely a form of removable media. There are many different removable media devices. The most popular are probably CD and DVD drives which almost every computer these days has at least one of. There are some new disc drives such as Blu-ray which can hold a much larger amount of information then normal CDs or DVDs. One type of removable media which is becoming less popular is floppy disk.

CD

CDs are the most common type of removable media. They are inexpensive but also have short life-span. There are a few different kinds of CDs. CD-ROM which stands for Compact Disc read-only memory are popularly used to distribute computer software although any type of data can be stored on them. CD-R is another variation which can only be written to once but can be read many times. CD-RW (rewritable) can be written to more than once as well as read more than once. Some other types of CDs which are not as popular include Super Audio CD (SACD), Video Compact Discs (VCD), Super Video Compact Discs (SVCD), PhotoCD, PictureCD, CD-i, and Enhanced CD.
CD-ROM Drive
CD-ROM Drive
There are two types of devices in a computer that use CDs: CD-ROM drive and a CD writer. The CD-ROM drive used for reading a CD. The CD writer drive can read and write a CD. CD writers are much more popular are new computers than a CD-ROM drive. Both kinds of CD drives are called optical disc drives because the use a laser light or electromagnetic waves to read or write data to or from a CD.

DVD

DVDs (digital versatile discs) are another popular optical disc storage media format. The main uses for DVDs are video and data storage. Most DVDs are of the same dimensions as compact discs. Just like CDs there are many different variations. DVD-ROM has data which can only be read and not written. DVD-R and DVD+R can be written once and then function as a DVD-ROM. DVD-RAM, DVD-RW, or DVD+RW hold data that can be erased and re-written multiple times. DVD-Video and DVD-Audio discs respectively refer to properly formatted and structured video and audio content. The devices that use DVDs are very similar to the devices that use CDs. There is a DVD-ROM drive as well as a DVD writer that work the same way as a CD-ROM drive and CD writer. There is also a DVD-RAM drive that reads and writes to the DVD-RAM variation of DVD.
DVD
DVD

Blu-ray

Blu-ray is a newer optical disc storage media format. Its main uses are high-definition video and data storage. The disc has the same dimensions as a CD or DVD. The term “Blu-ray” comes from the blue laser used to read and write to the disc. The Blu-ray discs can store much more data then CDs or DVDs. A dual layer Blu-ray disc can store up to 50GB, almost six times thecapacity of a dual layer DVD (WOW!). Blu-ray discs have similar devices used to read them and write to them as CDs have. A BD-ROM drive can only read a Blu-ray disc and a BD writer can read and write a Blu-ray disc.

Floppy Disk

A floppy disk is a type of data storage that is composed of a disk of thin, flexible(“floppy”) magnetic storage medium encased in a square or rectangular plastic shell. Floppy disks are read and written by a floppy disk drive. Floppy disks are a dying and being replaced by the optical and flash drives. Many new computers do not come with floppy drives anymore but there are a lot of older ones with floppy drives lying around. While floppy disks are very cheap the amount of storage on them compared to the amount of storage for the price of flash drives makes floppy disks unreasonable to use.
Floppy Disk
Floppy Disk

Internal Storage

Internal storage is hardware that keeps data inside the computer for later use and remains persistent even when the computer has no power. There are a few different types of internal storage. Hard disks are the most popular type of internal storage. Solid-state drives have grown in popularity slowly. A disk array controller is popular when you need more storage then a single har disk can hold.

Hard Disk Drive

A hard disk drive (HDD) is a non-volatile storage device which stores digitally encoded data on rapidly rotating platters with magnetic surfaces. Just about every new computer comes with a hard disk these days unless it comes with a new solid-state drive. Typical desktop hard disk drives store between 120 and 400GB, rotate at 7,200 rpm, and have a madia transfer rate of 1 Gbit/s or higher. Hard disk drives are accessed over one of a number of bus types, including parallel ATA(also called IDE), Serial ATA (SATA), SCSI, Serial Attached SCSI, and Fibre Channel.
Hard Drive
Hard Drive

Solid-State Drive

A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD emulates a hard disk drive, thus easily replacing it in any application. SSDs have begun to appear in laptops because they can be smaller than HDDs. SSDs are currently more expensive per unit of capacity than HDDs which is why they have not caught on so quickly.

Disk Array Controller

A disk array controller is a device which manage the physical disk drives and presents them to the computer as logical units. It almost always implements hardware RAID. RAID (Redundant Array of Independent Drives) is a technology that employs the simultaneous use of two or more hard disk drives to achieve greater levels of performance, reliability, and/or larger data volume sizes. A disk array controller also provides additional disk cache.

Exercises

A USB Wi-Fi adapter

A USB  Wi-Fi adapter  eliminates the need to hardwire the computer to a router or other network device. ... The  adapter receives signa...

Computers